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BORN APPROXIMATION OF THE SOLUTION 

OF THE INTERNAL WAVE SCATTERING PROBLEM 

S. P. Budanov, A. S. Tibilov, and V. A. Yakovlev UDC 532.593 

Difficulties in the execution of detailed and extensive measurements of internal wave 
parameters in the ocean retard, to a certain extent, the development of a correctly deduced 
theory. In particular, little is known about the internal wave energy distribution between 
different modes. For a number of reasons it is considered that, for a sufficiently definite 
thermocline, the lowest mode will dominate, whose behavior is investigated in most detail in 
theoretical respects [i]. However, higher modes characterized by higher values of the trans- 
verse velocity gradient, and increase in the possibility of local instability and degenera- 
tion into turbulence, play an important part in the development of internal wave spectra. 
Consequently, it is of interest to examine methods of energy transmission in the internal 
wave spectrum. The modal structure is evidently shaped as a function of the variability of 
a whole series of parameters specifying the propagation law and the interaction of internal 
waves in the ocean. Consequently, for instance, problems of internal wave propagation in the 
presence of horizontal density field inhomogeneities [2, 3], shear flows [4, 5], and arbitrary 
vertical density field [6], etc., were examined. A sufficiently complete list of literature 
can be found in [7-9]. 

One of the possible mechanisms of internal wave energy redistribution between different 
modes of the scattering of internal waves by localized density field inhomogeneities is dis- 
cussed. The simplest problem is formulated here: The Boussinesq approximation is used to 
describe a stratified fluid, and rotation of the earth is neglected while the density field 
inhomogeneities are considered not to vary in time and to be at rest. 

Within the framework of assumptions made in the linear formulation of the problem, and 
neglecting molecular viscosity forces, the initial system of equations describing the dynamic 
state of the medium has the form [i] 

~Uat + VP+To P gk=0,  VU=0, "-37 +Uvp~-pog Now=0, (1) 

where U -= {u, v, w} is the velocity vector of particles of the medium; p, pressure; p, devia- 
tion of the density from the initial density distribution, equal to p(z) + pl (r), where $(z) 
is the density distribution in the absence of inhomogeneities and p l (r) is a function char- 
acterizing the density-field inhomogeneity; r = xi + yJ + zk, and i, J, k, unit vectors 
along the Cartesian x, y, z coordinate axes; g, acceleration of gravity; N2o -= --(g/po)(d~/dz), 
Vaisala--Brunt frequency. It should be noted that stationary flows generally exist for such 
an assignment of the density field. But since these flows are sufficiently slow, they can 
be neglected in a first approximation and a density field given by a function independent of 
the time can be considered (see [3], for example). 

We will be interested below in a function U(r, t). Consequently, we go from system (i) 
over to a system of equations for u, v, w that does not contain the functions p(x, y, z) and 
p (x, y, z) : 

02 AW + N~ (Z) AhW -= ! Ah (UVpl), (2) 
Ot 2 Po 
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o -o [No W] " (2 )  - - A u = - -  g 0 [uVp~] 
Ot 2 OxSz 9o OxOz 

02 02 [No2U,, ] 02 [UVPl ] 
Av= , ,  g 

Ot 2 OyOz Po OyOz ' 

where  A h = 32 /3x  a + 3a /3y2 i s  t he  L a p l a c e  o p e r a t o r  i n  t h e  h o r i z o n t a l  c o o r d i n a t e s .  No g e n e r a l  
methods  e x i s t  f o r  s o l v i n g  sy s t em (2) f o r  a r b i t r a r y  f u n c t i o n s  N2o and pt  ( r ) .  In  t h i s  c o n n e c -  
t i o n ,  a p p r o x i m a t e  me thods ,  o f  which the  p e r t u r b a t i o n  method i s  most  w i d e s p r e a d ,  must  be u t i -  
l i z e d .  

We shall consider that 

] g VPl [<<t ,  
I l~(r) l ~  Oo ~v~ 

and shall seek the solution of system (2) in the form of a perturbation theory series in the 
small parameter Ifl(r) l. To do this, it is convenient to go from the system of differential 
equations (2) to its equivalent system of integral equations. To this end, we represent the 
solution of system (2) in the form 

U = ~ Q (r, x,) exp (ivt) dr ,  (3) 
~ o o  

where Q = {U, V, w} and the spectral components of U, V, W satisfy the following system of 
equations: 

N 2 

o AhW = --  ~ Ah (QVf)l), AW--  v ~ Po v2 

(N ow) -t - 02 (QVPO 
A U  = - -  7 OzOz + gPolV-2 Oxaz ' 

0 2 ( ~ w )  0 ~ (qv~ 0 
AV v" OuOz + go~ oyoz 

(4) 

Let qo(r) be a primary wave field satisfying system (4) with 7pi E 0, while G(r, r') is the 
Green's function of the first equation of this system, i.e., 

AG (r, r *) - -  ~AhG (r, r ')  = 6 (r -- r '), (5) 

where  ~2o = N2o~ - 2 ,  6 ( r )  = 6 ( x ) ~ ( y ) 6 ( z ) ,  and 6 (x)  i s  t h e  D i r a c  d e l t a  f u n c t i o n .  U n d e r s t a n d -  
a b l y ,  h e r e  t he  p r i m a r y  f i e l d  Qo( r )  and t h e  G r e e n ' s  f u n c t i o n  G ( r ,  r ' )  s a t i s f y  t h e  n e c e s s a r y  
b o u n d a r y  c o n d i t i o n s .  Then i t  i s  p o s s i b l e  t o  w r i t e  an i n t e g r a l  e q u a t i o n  e q u i v a l e n t  to  the  
f i r s t  e q u a t i o n  o f  s y s t e m  (4) i n  t he  form 

W (r) = W o (r) + ~ G (r, r') ~ (r') A h [Q (r') ~ (r')] dr ' .  (6) 

The series for function W(r) is constructed by iterating the integral equation (6). The 
first term of the series is the primary field. The second term, 

Wl (r) = ~ G (r, r') ~ (r') A h [q0 (r') ~ (r')] dr' (7) 

describes a singly scattered field. It is generated directly by interaction of the primary 
field Q0(r) with the density inhomogeneity. We limit ourselves to a solution of (6) in the 
form WB(r) = Wo(r) + W1(r) (Born approximation) by assuming the perturbation ~(r) to be suf- 
ficiently small. For the solution found for (6), the equations for the functions U and V in 
the Born approximation are Poisson equations whose solutions have been studied well enough 
(see [i0], for example). Hence, we limit ourselves below to a discussion of (7). 

In order to clarify better the fundamental regularities of scattering, we make a number 
of assumptions to simplify the analysis, but meanwhile conserve a sufficient generality for 
many applications of the theory. The assumptions reduce to the following: 

i. The medium is considered unbounded with B~o = const. 
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2. The primary field is a plane monochromatic wave being propagated in the negative 
direction of the coordinate axes at an angle 0 < do < ~/2 to the horizontal plane 

Up(r, t) = Ao ~xp [i(kr + ~t)], 

where k is the wave vector and the following dispersion relationship is satisfied: 

= No/~o = No cos a o. (8)  

3. The density field inhomogeneity is an isolated volume D with B(r) = const. 

To calculate W1(r), Green's function G(r, r') must be found. Within the framework of 
the assumptions made, the boundary condition of the problem here will be that G(r, r') tends 
to zero at infinity. We shall seek the solution of (5) in the form 

t ; G (x, p) e-iP~dp G (x, y,  z) = ~ -  y,  . 
t - - o o  

(9) 

Substituting this expression into (5), we obtain an equation for the function G whose solu- 
tion is known [II]: 

G (x, y, p) = ~ H~ ~) (?P), 

8~I s ~2o - -  i, Y ~ P/B, O = x~F + y2, H(1)o(X) is the zeroth-order Hankel function of the 
first kind. Hence, the formula [12]: 

G (p, z) = 

t ~ z ~  _ p2 > 0,  

~Iz~ _ p2 < 0 
2,~ 1 V p2 _ fi~_z2 

(i0) 

can be obtained for Green's function G(x, y, z). Substituting (i0) for Green's function 
G(r -- r') into the formula for the scattered field W,, we obtain 

W1 (p, z) _ (~Ao) k2ctgaol F exp (ikr)_.~O [#~(z--z')A = (p : p' )z] i ; exp (ikr_~)O[(p=p')~= ~ i ( z ~  z')2] dp,dz,1, 
2~ [~ V-~  (z - z , )  2 - (o - p 02 dp'dz' + D ]/(p -- p32 -- ~ (z -- z') z ) 

where 

t ,  x > 0 ,  
0(x)  0, x ~ < 0 ,  

Let us transform (ii). 
h,qx and h,qa, respectively, where 

h(p, z ) - ~ / ( p ,  z )exp  [ik0p] , 

(o) ------- o ( #  - o ~) o(p ~ - # )  f i ,  ql 
yT-z-~_p~ ' *~ ( p )  = VUzT_ # ' l ( o ,  =) = 

It is seen that the double integrals over p' are the convolutions 

(ll) 

p, z~D, 

p,z~D. 

Turning to the Fourier transforms for the functions h(p, z), q~(p, p), qu(P, P) and applying 
the convolution theorem [13]; we obtain 

([~A0) k2ctg % ~ h(~cp, z') exp [-- i l  pll• -iP• o.  ~ , 
W 1 (p, z) = -- 4n ~ v I% I e a~paz , 

- - o o  

where 
oo 

h(mp, z) = y ] (p, z) exp (i (kp + ~r p) dp. 
- - o o  
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The function h(~p, z) can be evaluated for a broad class of functions f ( 0 ,  Z ) .  In  p a r -  
t i c u l a r ,  many examples  o f  such  c o m p u t a t i o n s  can be  found i n  o p t i c s  ( the  c o m p u t a t i o n  of  F raun-  
h o f e r  d i f f r a c t i o n  by h o l e s  o f  d i f f e r e n t  k i n d s )  [14 ] .  

I t  i s  s een  from (12) t h a t  the  s c a t t e r e d  wave i s  n o t  un imodal  b u t  c o n t a i n s  a c o n t i n u o u s  
spectrum of wave numbers which do not satisfy the dispersion relationship for the incident 
wave in the general case. 

An an illustration of the utilization of (12), we consider density inhomogeneities of 
two kinds. 

i. Rectangular Cylinder with Generator along the Axis. Let 

/(p, z ) = 0 ( c  ~ -  ~ D 0 ( R -  IPl), 

where c is half the cylinder altitude and R is the cylinder radius. Then an expression [14] 

~(•  z) = 2 ~ R  ;~ (nl k~ + ~ I) o (c ~ -  zD 

can be obtained for h(~^, z), where J,(x) is a first-order Bessel function of the first kind. 
Substituting h(~p, z) i~to (12) and integrating with respect to z', we obtain 

W~(p, z) = - -  i(~Ao)k2Rctgao ~ L ( •  z) :~(n I ko + ~ ~ 1 7 6  . . . . .  . ~ .  -, 
_~ [• [ko+zo} o (13) 

L (~r z) = 0 (z -- c) e-i$11x~b c sin ~1 
Cs 1 

+ o e - I )  ---r-j 
U. 1 

where or1 = --c(kz + 13,1",,r a ,  = c ( kz  -- 13,1~p[ ) "  
the field W~ is maximal for forward scattering. 
the main contribution to the integral. 

+ 0 ( - -  z - -  c) e-i~d~4 ~ c sin % 
CZ 2 

~ (14) 
+ e~(%+%~)~si~ % 

~2 

It follows from (13) that the amplitude of 
The domain of values ~p = -kp here yields 

A necessary condition for applicability of the Born approximation is the condition of 
smallness of the scattered-wave amplitude IWII/IWol << i. Let us use (13) to estimate the 
limits of applicability of the approximation under consideration. Considering the principal 
maximums of the functions L(~p, z) and h(np, z) to yield the main contribution to the inte- 
gral, we obtain 

o {,kc ,,22 II 
I W~] ~ nDk" ct~ a 0 ] (~A0) I rain.  ~1-----7-- i -97- - -  I ka! . 

where  D = 2~R2c i s  t he  volume of  the  d e n s i t y  i n h o m o g e n e i t y .  The c o n d i t i o n  f o r  a p p l i c a b i l i t y  
of  the  Born a p p r o x i m a t i o n  hence  t a k e s  the  form 

Dk2ctgao I (~Ao) l min{ICtgao( i - -kzc)  l,I i,22 _ kp I }<< J* (15) 
Aoz c ~ ! 

2. Rectangular Parallelepiped. Let 

/(p, z ) =  O ( a -  lxl)O(b-- lYl)O(c- [zl), 

where  2a,  2b,  and 2c a r e  the  l e n g t h s  o f  t he  p a r a l l e l e p i p e d  e d g e s ,  In  t h i s  c a s e ,  we have  f o r  
t he  f u n c t i o n  h(>tp, z) [14] 

h(z~, z ) = 4 0 ( c - - l z l )  sin a (kx + • sin b (ku + • 
k x -F • ky + • ' 

from which 

2i ; L (• z) sin a (k x ~- • sin b (k~ -+- • e-~PUOdzo. (16) 
W 1 (p, z) -- 32 k 2ctga  o(~Ao) I• I kx + z x  ky + •  

--oo 

Even in this case the domain of values ~p = --kp yields the main contribution to the integral 
while W, is maximal for forward-scattering. Let us estimate the limits of applicability of 
the Born approximation. Going over to polar coordinates in (16), we can obtain the condition 
desired: 
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Dk2 ctg a~ [ (~0~)------~ rain { I ctg % ( t - -~c )  1 ' 7  ~ l  ~Z+b2~ 

where D = 8~bc is the volume of the inhomogeneity. 

It is interesting to examine the particular case ~, b § ~ (a jump in density of thick- 
ness 2c). Letting ~ and b in (16) tend to infinity, and utilizing the formula 

lim sin~x _ ~8(x), 
x 

we obtain 

W~ (p, z) = --  2gk (~ A~ L (--  ko, z) eikP% (18) 
Sin  ~ 0  

As s h o u l d  have  been  e x p e c t e d ,  p l a n e  wave i n t e r a c t i o n  w i t h  the  d e n s i t y  jump does  no t  r e s u l t  
i n  a change i n  modal c o m p o s i t i o n .  0n ly  the  t r a n s m i t t e d  and r e f l e c t e d  waves  e x i s t ,  where  the  
a m p l i t u d e s  o f  t h e s e  waves  a r e  i d e n t i c a l  f o r  kzc  << 1. Le t  us n o t e  t h a t  (18) can be  o b t a i n e d  
from (13) also since W~(O, z) § WJt(p, z) as R § ~. The condition for applicability of the 
Born approximation to describe plane wave interaction with a density jump has the following 
form, as is seen from (18): 

kc I(~A~ <<t. (19) 
sin % Aoz 

The c o n d i t i o n s  (15 ) ,  ( 1 7 ) ,  and (19) p r e s e n t e d  f o r  a p p l i c a b i l i t y  of  the  Born app rox ima-  
t i o n  for density field perturbation domains of a particular kind can be obtained from the 
general estimates of the applicability of the single scattering approximation, which should 
be performed on the basis of (12) for W~(p, z). In conformity with the properties of the 
Fourier transformation, the function h(~p, z) evidently diminishes rapidly as ]~01 grows for 
large R (Rk0 >> i), where R is the characteristic horizontal dimension. The integral (12) 
with respect to z' diminishes rapidly with the growth of [~01 for large R or c in exactly the 
same manner, where c is the characteristic vertical dimension of the inhomogeneity. We con- 
sequently have 

I Wl I k ~ ~t~ % I (~Ao) ; 
] Wo I ~2  Ao ~ -~ ~ _ h (x~, z') e-ilvll~l+i~'dz ' dxp k%tg a 0 I (~'A0)] ~0~ D• 

where %=m n{I I' I , ,  

zontal wave numbers in which the amplitude of the scattered wave is substantially different 
from zero. 

Therefore, in the general case we have the following condition for the applicability of 
the Born approximation: 

k2ct ~ I ( ~ A ~  ]c tg%( l - -kzc ) [}<<l .  
g o ,%-----7- 7 

Let us now estimate the order of the angular dimension of the domain in which the ampli- 
tude of the scattered wave is essential. To do this we write the scattered wave in the spec- 
tral form 

W l ( x )  -= - -  ik2-ctgao(f~Ao) {g[8(• + ~.lupl) + 6 ( •  ~l]u0[)] + i z~---'~'11%1 
i • fil ] xal]}; (20) 

S ~ .  . i(kz+Zz)Z. F (:r = n t x  o, z) e az, z = {~o, • (20a) 
--oo 

I t  i s  s een  from (20) t h a t  t he  s p a t i a l  s p e c t r u m  of  the  s c a t t e r e d  wave has  peaks  a t  f r e q u e n c i e s  
s a t i s f y i n g  the  d i s p e r s i o n  r e l a t i o n s h i p  (8 ) .  As f o l l o w s  from (12) ,  t he  f u n c t i o n  h (~p ,  z) has  
a smooth maximum f o r  xp  ~ - k ~ .  The f u n c t i o n  F(x)  i s  maximal h e r e  f o r  ~ ~ --k0 and Xz ~ --kz, 
i . e . ,  f o r  fo rward  s c a t t e r i n g .  Le t  us i n t r o d u c e  t he  p o l a r  0 and a z i m u t h a l  �9 a n g l e s  c o r r e s p o n d -  
ing  to the direction ~ relative to the direction --k. Then the range of the angles ~ and ~ in 
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which the scattered wave amplitude is substantially different from zero can be estimated from 
the following conditions: 

For @ according to (12), 

2k~R sin (1/2)0 ~ i or 0 <.~ l / k j ~ ;  

For ~,according to (20a), for = ]k~l and [kz-~zlC = i, 

k 2 + k2 0 +(k  z + A~z) ~ -  A• ck +sin  % 
cos q~ ~, = �9 

2k l / +, + A z) 2  P(ck + sin + % 

T h e r e f o r e ,  t he  s i z e  of  the  domain i n  which  t he  s c a t t e r e d  wave a m p l i t u d e  i s  s u b s t a n t i a l  en-  
c l o s e d  the  a n g l e  @ ~ 1 /kpR i n  the  h o r i z o n t a l  p l a n e  and the  a n g l e  

[ ok+s in% ] 
~ arccos 

V (ok + sin %)2 + cos 2 0% 

in the vertical plane. It follows from the estimates obtained that, in contrast to optics, 
internal wave scattering remains anisotropic in the vertical plane even in the case of fine- 
scale inhomogeneities (kzc << sin so). The scattering angle ~ here tends to ~0max = ~/2- n 0. 

Therefore, internal wave scattering by density inhomogeneities results in an energy re- 
distribution between different modes and could be one of the energy transmission mechanisms 
over the spectrum. It can be seen that the constraints made in the analysis of (7) on the 
kind of density field inhomogeneity, the boundary conditions, and the initial internal wave 
field can be weakened. In particular, the following problems are perfectly visible: in- 
ternal wave scattering by continuously inhomogeneous density fluctuations, taking account of 
the influence of the ocean--atmosphere interface and the presence of the bottom (the change in 
boundary conditions), consideration of the scattering of a set of internal waves with multi- 
modal structure, etc. In our opinion, the question of the necessity to take account of the 
effects of multiple scattering is more complex. In itself this problem can be solved, in 
principle, within the framework of system (i). However, the dynamical state of the medium 
that occurs because of multiple internal wave scattering cannot be described by the system (i), 
for instance in connection with the degeneration of part of the wave field into turbulence or 
for other reasons. Hence, questions of the relationships of discarded terms in the initial 
system (i) and corrections to a singly scattered field must be investigated carefully in tak- 
ing account of multiple internal wave scattering. 
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